ELEMENTARY PROOF THAT Z;ﬁ IS A DCI-GROUP

JOY MORRIS

ABSTRACT. A finite group R is a DCI-group if, whenever S and T are subsets
of R with the Cayley graphs Cay(R, S) and Cay(R,T) isomorphic, there exists
an automorphism ¢ of R with S¥ =T.

Elementary abelian groups of order p* or smaller are known to be DCI-
groups, while those of sufficiently large rank are known not to be DCI-groups.
The only published proof that elementary abelian groups of order p* are DCI-
groups uses Schur rings and does not work for p = 2 (which has been separately
proven using computers). This paper provides a simpler proof that works for
all primes. Some of the results in this paper also apply to elementary abelian
groups of higher rank, so may be useful for completing our determination of
which elementary abelian groups are DCI-groups.

1. INTRODUCTION

The classification of DCI-groups is an open problem in the theory of Cayley
graphs and is closely related to the isomorphism problem for graphs. It is a long-
standing problem that has been worked on a lot, see [4, [§] for additional background.
The formulation of this problem was introduced by Babai in [2]. Elementary abelian
groups of order p* or smaller are known to be DCI-groups [14} [5, [1, 3] 6], while
those of sufficiently large rank are known not to be DCI-groups [IT}, 13| 12]. The
only published proof that elementary abelian groups of order p* are DCI-groups
[6], uses Schur rings and does not work for p = 2 (which has been separately proven
using computers). This paper provides a simpler proof that works for all primes.
It is based on work from the author’s PhD thesis [9] (which was completed concur-
rently with the Hirasaka-Muzychuk result), but has been considerably shortened
and simplified. Some of the results in this paper have been newly generalised to
apply to elementary abelian groups of higher rank, so may be useful for completing
our determination of which elementary abelian groups are DCI-groups.

Let R be a finite group and let S be a subset of R. The Cayley digraph of R
with connection set S, denoted Cay(R,S), is the digraph with vertex set R and
with (x,y) being an arc if and only if 271y € S. Now, Cay(R, S) is said to have the
Cayley isomorphism property for digraphs, or be a DCI-graph for short, if whenever
Cay(R,S) is isomorphic to Cay(R,T'), there exists an automorphism ¢ of R with
©(S) = T. Clearly, Cay(R,S) = Cay(R, ¢(5)) for every ¢ € Aut(R) so that for
a DCI-graph, solving the isomorphism problem boils down to understanding the
automorphisms of the group R. The group R is a DCI-group if Cay(R,S) is a
DClI-graph for every subset S of R. Moreover, R is a Cl-group if Cay(R,S) is
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a DCI-graph for every inverse-closed subset S of R. Thus every DCI-group is a
Cl-group.

Throughout this paper, p will always denote a prime number, and calculations
are always performed modulo p (i.e., in Z,,).

Theorem 1.1. Let p be a prime number and let R be the elementary abelian group
of order p*. Then R is a DCI-group.

The structure of the paper is straightforward. In Section [2| we provide some
preliminary definitions and notation, and reproduce some lemmas from other papers
that will apply directly to our situation, including our main tool. In Sections
and [5] we complete the proof of Theorem Where possible, we will state our
results in the more general context of Cayley graphs on arbitrary elementary abelian
groups, as some of the results may be useful for proving that elementary abelian
groups of higher rank are DCI-groups.

2. PRELIMINARY RESULTS AND NOTATION

Babai [2] proved a very useful criterion for determining when a finite group R is
a DCI-group and, more generally, when Cay(R, S) is a DCI-graph.

Lemma 2.1. Let R be a finite group and let S be a subset of R. Then Cay(R,S)
is a DCI-graph if and only if Aut(Cay(R, S)) contains a unique conjugacy class of
reqular subgroups isomorphic to R.

Let Q be a finite set and let G be a permutation group on 2. The 2-closure of
G, denoted G| is the set

{7 € Sym(Q) | V(w,w’) € Q2, there exists g € G with 7((w,w")) = Guw ((w, "))},

where Sym(Q) is the symmetric group on Q. Observe that in the definition of G,
the element g, of G may depend upon the ordered pair (w,w’). The group G is
said to be 2-closed if G = G2,

It is easy to verify that G(? is a subgroup of Sym(Q) containing G and, in fact,
G @) is the smallest (with respect to inclusion) subgroup of Sym() preserving every
orbital digraph of G. It follows that the automorphism group of a graph is 2-closed.
Therefore Lemma [2.1] immediately yields:

Lemma 2.2 (Lemma 2.2 of []). Let R be a finite group and let Ry be the left
reqular representation of R in Sym(R). If, for every m € Sym(R), the groups Ry,
and 7~ Rpm are conjugate in (Rp, 7 'Rpm)?, then R is a DCI-group.

We will use this formulation of Babai’s criterion without comment in our proof
of Theorem [I1]

We now set up some notation that will be used throughout the rest of the paper.

Let R be an elementary abelian group of rank n. Set G = (Rp, 7 'Rp7). Let
P be a Sylow p-subgroup of G with R < P and let T be a Sylow p-subgroup of
Sym(Q) with P < T. From Sylow’s theorems, replacing 7=!Rym by a suitable
G-conjugate, we may assume that 7 'Rym < P, so that in fact G = P. From now
on we will refer exclusively to GG, but keep in mind that G itself is a p-group.

Observe that the group T is Z, wr...wrZ, (n copies of Z,), which has a unique
system of imprimitivity with blocks of size p’ for each 0 < i < n. Since R; and
71 Rp7 are acting regularly, they must admit these same systems of imprimitivity.
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For 0 < i < mn, let B; be the system of imprimitivity of T" that consists of blocks of
size pt.

For each 0 < ¢ < n — 1, choose 7; to be an element of Ry that fixes each
set in B;;1 setwise, and has order p in its action on the sets in B;. Notice that
(T0y+++,Tn—1) = Rp. Let v be a fixed element of R (recall that both Ry and
7 lRpm are acting on R). For each 0 < i < n — 1, define 7/ to be the unique
element of 7' Ry such that 7/(v) = 7;(v).

If we say that a permutation fixes every element of B; for some i, this means
that the blocks of B; are all fixed setwise, and does not imply that any point of R
is fixed.

For any v € R, use B, to denote the element of ; that contains v, and C, to
denote the element of By that contains v. In some cases, we will be dealing with
two or even three systems of imprimitivity of G with blocks of size p; in this event,
we call the additional systems B{ and BY, and B], and B, will denote the elements
of these systems (respectively) that contain v.

The following result is a restatement of Proposition 2.3 of [10].

Lemma 2.3. Let 7~ 'Ry7m and Ry, be isomorphic to ZZ and lie in the same Sylow
p-subgroup of Sym(R). Suppose that T € Ry fizes every element of B; for some
i > 1, and has order p on the elements of Bi_1. Let 7" € n~'Rym be such that
7/(B) = 7(B) for some B € B;_1. Then 7'(B’) = 7(B') for every B’ € B;_1.

The hypothesis that 7! Ry 7 and Ry, lie in the same Sylow p-subgroup of Sym(R)
will generally be considered to be part of the notation we have established (that G is
a p-group), so will be tacitly assumed in our results. Since it is the key assumption
needed to prove the above result, however, we have stated it explicitly this once.

We introduce a bit more notation that will be required for the next result, and
will be used in Section [3] Let K be the kernel of the action of G on B;. We define
an equivalence relation = on . Given z,2’ € R, we have x = 2’ whenever, for
every p € G, p|p, = id|p, if and only if p|p,, = id|p,, (or equivalently, p|p, is a
p-cycle if and only if p|p_, is a p-cycle). Let £ denote the set of equivalence classes
of =.

Lemma 2.4. For every p € K and for every E € £, the permutation pg : R — R,
fizing R\ E pointwise and acting on E as p does, lies in G®,

Proof. This is Lemma 2 in [7]. (We remark that [7, Lemma 2] is only stated for
graphs, but the result holds for each orbital digraph of G, and hence for G(z).) 0

The final result that we require that we require from the existing literature is
Proposition 2.7 from [10], restated slightly.

Lemma 2.5. Let R be an elementary abelian group of rank n. Under the notation
we have established, if Ty, ..., Tn—o € T 'Rym, then Ry, and 7 'Ry are conjugate
in G®?.

/
3. n

In this section, we prove a key lemma that will allow us to assume that for any
elementary abelian group R (regardless of the rank), the centre of G has order at
least p2. Specifically, we will prove that there exists ¥ € G such that 1) commutes
with 79, and 7~ 'Rym contains ;. Notice that Lemma immediately implies
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that 7, = 79 € Z(G), so proving this will allow us to assume that |Z(G)| > p?;
specifically, that 7o = 7} and 7{ = 71 in the final section.

Since the following lemma applies quite broadly, we state it in general terms.
We will follow with a corollary that more clearly applies this lemma.

Lemma 3.1. Let R be an elementary abelian group of rank n. Under the notation

we have established, if 7' € 7 'Rym and 7 € Ry, such that T~17' fizes every element

of By, then there exists 1 € G such that " w~'Rpmi contains T.
Furthermore, if a fizes every element of £, then v commutes with «.

Proof. By Lemma we may assume that 7} = 7. Replace 7’ if necessary by 757’
for some ¢, so that 7=17/(v) = v. The hypotheses of this lemma are still satisfied.

We will use ¢ to denote 717/, Notice that for any B € By, since g fixes B setwise
and is in the p-group G, we must have g|p = 75" |p for some cg. Furthermore, if
B,B' € By and B,B’ C E € &, then using p = 7, ““¢ in the definition of =, we see
that we must have cg = cp/. If ¢g = ¢ps for every B, B’ € By, then since g(v) = v,
we have cg = 0 for every B € By, and hence 7/ = 7, so letting ¢ = id yields the
desired conclusion. Therefore, in the remainder of this proof, we may assume that
|€] > 1, and that there exists B € B; such that cg # 0.

Now we show that for any E € &, 7(F) # E. Let 0 € Ry, be such that o(v) € B,
where cg # 0, and let o/ € 7~ 'Ry7 be such that ¢/(v) = o(v), so oo’ (v) = v.
Let w = 7(v). Then since both Ry, and m~!Ry7 are abelian, we have

o lo'(w) = o770 (v)

0717537'0(1))

= 755 (w).

(To get the second line, we are using the definition of c¢g.) Thus using p = o~ 1o’
in the definition of =, we see that when v € E € £, we have w = 7(v) # v. Since &
is invariant under G and G is transitive, this proves that for any £ € &, 7(F) # E.

We know that &£ consists of p/ classes, for some j > 1. Since Ry, is elementary
abelian, 7 has order p, so the classes of £ can be partitioned into p? ! orbits of T,
which we will refer to as orbit 1, ..., orbit p? 1. For orbit i, we arbitrarily choose
one element of £ in that orbit, and label it E;. Now, the elements of £ are

(TH(E):0<k<p-1,1<i<pl)

For 1 <i < pi~1 let B; € By be such that B; C F;. Define v as follows: for any 4,
Y|g, = id|g,, and for any integer k,

Sh0 ertn,
Yloemy =70 P,

k(E;):
Notice that since 7/ has order p, Zf:_é crt(B;) =0 (mod p), making this definition
consistent.

Now, 4 is a product of elements of the form (7§)g (using the notation of
Lemma , so by Lemma we have ¥ € G?). Since 7y € Z(G), it is clear
that v commutes with any « that fixes every element of £.
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We claim that v~ !7/¢) = 7, which will complete the proof. Let x € R be
arbitrary, and let k,i be such that = € 7%(E;). Then since 19 € Z(G), we have

k—1
v p(x) = w_lT’TOZ”:U CTt(B”(x)
_ ’(/}_17_021:01 CTt(Bi)T/(CC)

.
= dﬁlroz":o CTt(B“T(as)
7(z)

O

Corollary 3.2. Let R be an elementary abelian group of rankn. Under the notation
we have established, there exists ¥ € G2 such that 1 commutes with 1, and
Y Ir LR contains 7. Thus we may assume that 70,71 € Z(G).

Proof. By Lemma we have 1) = 79 fixes every element of £ setwise by the
definition of =, and for any B € By, we have 7, '7{(B) = B. Thus 7{ and 7, fulfill
the requirements of Lemma with 79 taking the role of a. O

4. AN EASY CASE

In this section, we will consider the possibility that 74} is “close” to T2 (meaning
that 75 174 fixes every block of B; or some other system of imprimitivity with blocks
of size p). We determine some circumstances under which this situation must arise,
and conclude that the proof of Theorem [I.1]is complete under these circumstances.

Corollary has concluded that we may assume 79,71 € Z(G). This means
that for any g € G and any w € R, if g(w) = TéTf(w) € Cy, then g*(w) = Té”lej.
Thus G lies in multiple Sylow p-subgroups of Sym(R); in particular, every Sylow
p-subgroup of Sym(R) that admits Bs, ..., B,_1 as systems of imprimitivity as well
as admitting any one of the p + 1 systems of blocks of size p that are preserved
by Rr. (In addition to By, these are the orbits of (r9)im for 0 <i < p—1.) Our
argument about the action of g demonstrates that orbits of G, meet any block of
B in either a single point, one of these blocks of size p, or the entire block of Bs.

By our observations above, we may replace By by any of the other systems of
imprimitivity with blocks of size p that are refinements of By and are admitted by
G, and redefine = and & accordingly. This concept gives us the following result.

Lemma 4.1. Let R be an elementary abelian group. Under the notation we have
established, if 72_172’ fixes every block of some system of imprimitivity of Ry with
blocks of size p that is a refinement of By, then there exists 1 € G®) that commutes
with 7o and 71 and such that 7 € Y~ 'r ' Rpm.

Proof. By Corollary we may assume that 79,71 € Z(G). Replacing B; by the
system of imprimitivity whose blocks are fixed by 7, 172/ and applying Lemma
we see that there exists 1 € G such that € ¥ 7~ 'Rym. Furthermore, 7
and 7 commute with 7, lTé and so have the property of « in the statement of that
lemma. Thus, ¢ commutes with both 79 and 7. ([l

The next lemma and corollary point out a circumstance under which the above
special situation must arise. In order to find appropriate elements of G(?) that will
conjugate 7' Rym to Ry, the orbits of particular subgroups of G will be key. The
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subgroups of interest are those that fix the vertex v, while simultaneously fixing
every block of B; for some i. For any fixed ¢, we will denote this subgroup by G, .

Lemma 4.2. Let R be an elementary abelian group of rank 4. Under the notation
we have established, suppose there are blocks C,C' € By such that G, p, fizes each
B € By with B C C, and also fizes each B’ € By with B’ C C'. Further suppose
that o € Ry, is such that o(C,) = C and there is no i such that o*(C,) = C'. Then
7, 17} fizes every element of By (setwise).

Proof. There are p? elements of By. By our assumptions, if 3 € Ry, is such that
B(C,) = C', then any element of By can be written uniquely as o?3(C,), where
0<i<p—1l,and0<j<p-—1.

We will show that if G, s, fixes each block of By in o?3?(C,) setwise, then G, s,
fixes each block of By in a'T137(C,) setwise; and likewise, G, 5, fixes each block of
By in o371 (C,) setwise. Inductively, this will show that G, g, fixes each block of
B1 setwise, so in particular, 75 172’ € G,, which fixes each block of By setwise, must
actually fix each block of B setwise.

Let g be an arbitrary element of G, g,. Let v € {a, 8}. Since (by assumption)
g fixes each block of By in o'B37(C,) setwise, in particular we may assume that
g’ (v) = 78’ (v) for some k. Thus ¢ = o'~ I7;%ga’37 € G, and since g
and 79 fix every element of Bs, so does ¢', so ¢’ € G, g,. We therefore have that ¢’
fixes every B € By with B C v(C,). Let B be arbitrary subject to the constraints
B € By and B C va'3/(C,). Let B’ C v(C,) be such that a’37(B’) = B. We know
that ¢’ fixes B', so a~'3 91, ga’3/(B') = B’. This implies that 7§(B) = g(B).
Since 7y fixes B setwise, so must g. This completes the proof. O

Corollary 4.3. Let R be an elementary abelian group of rank 4. Under the notation
we have established, suppose there are blocks C,C' € By such that G, p, fizes each
B € By with B C C, and also fizes each B’ € By with B' C C'. Further suppose
that a € Ry, is such that o(C,) = C and there is no i such that o*(C,) = C'. Then
there exists ¥ € G@ that commutes with 79 and T1, such that 75 € Y~ 'r 1Ry m.

Proof. This is an immediate consequence of Lemmas [£.2] and [£.1} O

This gives us the following conclusion.

Corollary 4.4. Let R be an elementary abelian group of rank 4. Under the notation
we have established, if either:
. 72_17'5 fixes every block of some system of imprimitivity of Ry with blocks
of size p that is a refinement of Ba; or
o there are blocks C,C’ € By such that G, g, fizes each B € By with B C C,
and also fizes each B’ € By with B’ C C'. Furthermore, if a € Ry, is such
that a(C,) = C then there is no i such that o*(C,) = C’,

then there exists ¢ € G such that v~ 'n~'Rpm = Ry.
Proof. This follows from Corollary [£:3] Lemma 1.1} and Lemma 2.5 O

Thus, in the next section, we may assume that there is no system of imprimitivity
of Ry with blocks of size p that is a refinement of By whose blocks are all fixed by
75 75, We may also assume that if o, 3 € Ry, such that there is no i for which
a'(C,) = B(C,), then there is no system of imprimitivity of Ry, with blocks of size
p that is a refinement of By such that the orbits of G, 5, in both «(C,) and 3(C,)
are subsets of these blocks.
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5. PROOF OF THEOREM 1.1

We begin with a lemma that gives us important information about certain orbits
of G,. In the lemma, we show that if v € D, € B;, and a € Ry, then knowing
something about the orbits of G’ in a(D,) informs us about the orbits of G’ in
o?(D,) for any j. Specifically, if the orbits in a(D,) are not contained within the
blocks of some smaller block system By, of Ry, then neither are the orbits in o/ (D).

Lemma 5.1. Let R be an elementary abelian group. Under the motation we have
established, suppose D, D, € B;, with v € D, and D = «(D,) for some a € Ry,.
Suppose that some element of G, does not fix some block of B; in D (setwise),
where j < i. Then for any 1 < k < p—1, some element of G, does not fix some
block of B; in a*(D,) (setwise).

Proof. Let t be as small as possible such that some element of G, does not fix some
block of B; in a**(D,) (setwise). Such a ¢ exists since o has order p, so o = «
for some 1 < ¢ < p — 1. By assumption, there exist F' € B; such that F C o**(D,)
and g € G, such that g(F) # F. Let 8 € Ry, be such that ¥ (v) € F.

Now, by our choice of ¢, every element of G, fixes every block of B; in a*t=1(D,)
(setwise). In particular, if F, is the block of B; that contains v, then prFE=D(F,)
is fixed (setwise) by g, so there exists some v € Ry such that vg fixes the point
Bt (). Conjugating vg by =1 yields an element of G, that does not fix
B*(F,) C B*¥(D,) = ok (D,). O

We must deepen our understanding of the orbits of G,,. We define a new relation
~ on the points of R as follows. We say vy ~ vy if there exists v3 € C,, such that
there is no g € G, with g(v2) = vs, i.e. C,, is not contained in an orbit of G,,.
Notice that Lemma shows that this relation is symmetric, since if vo = a(v)
then there is some 4 such that a'(ve) € C,,, and the lengths of the intersection
of the orbits of G,, in C,, = a*(C,,) are the same as the lengths of the orbits of
Gy, in a*(C,,), since these are conjugate. The relation ~ need not be transitive,
but we can define an equivalence relation =5 by vy =5 vy if there is a sequence
U] = V1, U, ..., U; = vg such that u; ~ug ~ ... ~ u;.

In the case n = 4, the relation =, may have 1, p, or p? equivalence classes, since
clearly any two vertices in the same block of By are equivalent. If =5 has more
than one equivalence class, then each equivalence class has the form Uf;ol at(Cy)
for some o € Ry, (since the equivalence classes are blocks of G; note that if there
are p* equivalence classes, then « fixes C,,). Thus Lemma in fact proves that
~ is an equivalence relation in this case.

Before proving our main lemmas, we prove a result that will be needed in both.

Lemma 5.2. Let R be an elementary abelian group of rank 4. Under the notation
we have established, v ¢ w for any w € 12(Cy).

Proof. By Corollary we may assume that for any B;, some block of B is not
fixed by 7, 17’5. Let By be an arbitrary refinement of By with blocks of size p.

By the definition of ~, showing that v «¢ w is equivalent to showing that 72(C,) is
contained in an orbit of G,. Let a(B,) be a block of By that is not fixed by 72_17'5.
Consider (o’)~la, where o/ is the element of 7~!Ry7 such that o/(v) = a(v).
Clearly (o/)"'a € G,. Notice that

o (12(By)) = o/ (13(By)) = m3((By)) = m3(a(By)) # 72(e(B))-
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Therefore, (o) ta(ra(By)) = (o) tmea(B,) # 12(B,). Hence the orbits of G, in
79(C),) are not contained in the blocks of B;. There was nothing special about the
choice of By, so the orbits of G, in 75(C,) are not contained in the blocks of any
system of imprimitivity of G that is a refinement of By with blocks of size p. The
only way this can happen is if 75(C,) is contained in an orbit of G,,, as claimed. O

In the next result, we dispose of the cases where =5 (and so ~) have more than
one equivalence class.

Lemma 5.3. Let R be an elementary abelian group of rank 4. Under the notation
we have established, suppose that =2 has more than one equivalence class. Then
there exists 1) € G®) such that 't~ 'Rpmp = Ry.

Proof. By Lemma we know that v % 72 (v). Since ~ is actually an equivalence
relation under our current assumptions, this in fact implies that 7 (v) is not in the
same equivalence class (of =3) as v.

Redefine 73 if necessary, so that if =2 has p equivalence classes, then the equiv-
alence class containing C, is U'_j74(C,). Define ¢ by p(w) = 75757 (w) for
w E Tg 75(Cy).

First notice that ¢ commutes with 79 and 71. By Corollary [3.2] we may therefore
assume that 70,7 € ¢ 'm 'Rpmp. Let w € R be arbitrary, say w € m3574(C,).
Then we have

e rhp(w) = ¢

so ¢ 't = T9. Notice that since 7, '75 is in Go.B,, ¢ also fixes every block of
By (setwise). By the definition of =y, in order to ensure that o € G(?, we need
only verify that for any pair wq,ws with wy; =2 wo, there is some g € G such that
g(w1) = p(wy) and g(w2) = ¢(wsz). But this is clear from the definition of ¢, with
1779 since wy =2 wo implies that if w; € Tgi“(Cv), then wq € TgTéz(C’U).
2.5)

—J
g =T3T
Thus, 79,71, 72 € ¢ 'n ' Rymp. Now Lemma [2.5] completes the proof. (I

Ty (w) = o ey U (w) = ma(w),

1

We now complete the proof with a longer result that deals with the case where
=5 has a single equivalence class.

Lemma 5.4. Let R be an elementary abelian group of rank 4. Under the notation
we have established, suppose that =2 has a single equivalence class. Then there
exists P € G? such that vl Rymp = Ry

Proof. Since =5 has a single equivalence class, there must exist a;, 3 € Ry, such that
a and 3 each have order p on the blocks of Bs, there is no i such that o!(C,) =
B(Cy), and v ~ a(v),B(v). Notice that since we may assume (by Corollary
that 79,71 € Z(G), the intersection of any orbit of G, with any block of By must
be a block admitted by Ry. Observe that since v ~ «(v), 8(v) and G, g, < Gy,
using the second condition of Corollary 1.4 we may assume that if the intersections
of the orbits of G, with «(C,) are blocks of By, then the intersections of the orbits
of G, with 8(C,) are blocks of B, where B # Bj.

By Lemma we know that «(C,),8(C,) # 7i(C,) for any i, so there exist
some 7, k such that o’ 75(C,) = B(C,). Since G, fixes every block of Bs setwise, in
particular it fixes the block containing o?(C,) and §(C,) setwise. Since Bj # B
and 79,71 € Z(G), there must not exist g € G, such that ga?(C,) = B(C,). So
G, must fix every block of By in the block of B3 that contains o (C,) and 3(C,).
Using Lemma with ¢ = 3 and j = 2, this implies that G, = G, 5,.
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Without loss of generality, assume 3(C,) = m4a/(C,).

For the remainder of the proof, we must consider two cases separately: either
there is some v € Ry, such that v(C,) = 75 a(C,) for some j # 0,7, and v ~ (v);
or v o Tia(v) for every j # 0, .

Case 1. There is some v € Ry such that v(C,) = 7 a(C,) for some
Jj # 0,4, and v ~ vy(v).

Again ubing Corollary - we may assume that the orbits of G, in y(C,) are
blocks of BY, where BY # B,

In this case, we claim that for any g € Gy, if g(a(v)) = o1(a(v)) and g(8(v)) =
a2(B(v)), then for any w = a?3°(v), we have g(w) = ofo g( ). Since g commutes
with 79 and 71, and every block of By can be written as a®3%(C,,) for some a, b, this
completely determines the action of g.

To prove our claim, we first note that a, 3, and ~ are interchangeable in the
arguments we will make (and in fact in the statement of the claim). Notice that
a(C,) = Bk1y*2(C,) for some ki, k; in fact (by multiplying by appropriate powers
of 79 and 71) we can choose 3 and 7 such that *¥1v%2(v) = a(v).

Using Lemma we have g(8*1(B!)) = ¥ (B), so there is some 09 € Ry,
that fixes all blocks of B} such that o, 'g fixes 8% (v). Conjugating G, by 3%,
we know that Gge, (. fixes BFyk2(B), so 0y tga(B!) = a(B!). Thus ga(B!) =
o20(BY). Similarly, there is some o7 € Ry, that fixes all blocks of B; such that
for some z, 010, %g fixes 4*2(v), and a similar argument shows that ga(B.) =
o7 tofa(B!), where o105 ” fixes every block of BY. In particular, ga(v) € opa(B/)N
o7 tofa(B!) Na(B,), and this intersection consists of the single point o1 (v) (so
x =1). Hence ga(v) = oya(v). This argument in fact shows that if we know ga(v),
we can determine from it g3*! (v) and gv*2(v).

Now consider g(af* (v)). Since o7 'g fixes a(v), it lies in aG,a ™!, so must also
fix aB¥ (B!). Similarly, oy g fixes 81 (v), so fixes af* (B,). Hence gaf* (v) €
ag1aBk1 (B! )Noyaf* (B,). Straightforward calculations show that the unique vertex
in this intersection is oj02a8%1 (v). Now ga?(v) € a?(B,), say o¥ga?(v) = a?(v).
Then o gaf* (v) € afF(BY), since a1 (C,) = v *2a%(C,). The unique solution
to this is * = —2, so ga?(v) = o%a?(v). By repeating this argument p — 3 more
times, we may conclude that ga®(v) = ofa®(v), for any a. As previously mentioned,
there is nothing special about « as compared to 3 or -, so a corresponding result
for 3 also holds.

Finally, since any block of B can be written uniquely as a®3%(C,), by showing
that if ga®(v) = o¢a®(v) and g3°(v) = 058°(v) (replacing o, by an appropriate
power), then ga®3°(v) = o¢ab(a®B?(v)) we will complete the proof of our claim.
Again, our knowledge of the orbits of G, tells us that since oy %g fixes a®(v),
it also fixes a®(%(B!), and since o, g fixes 3°(v), it also fixes a®3%(B,). Thus
g(a?Bb(v)) € ¢ (a®Bb(B.))Nos(a®B(B,)). The unique point of intersection shows
that g(a?B%(v)) = o¢ab(a®B%(v)). This completes the proof of our claim.

If 7, 75 fixes either a(v) or B3(v), then the above claim demonstrates that 7, ' 75
in fact fixes every block of either B} or (respectively) every block of By, and hence
by Corollary [4.4] we are done. So we may assume that 7, '75(a(v)) = o(v) where
o1 € Ry, is not the identity, and 7, '75(3(v)) # B(v).

Now, we have a~1a/ € G,, so by our claim, if a=ta/ fixes either a(v) or B(v),
then it must fix every block system of either B or B; (respectively). But then since
the only point that is in both «(B) and either one of v(B,) or y(B)) is v(v), we
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must have a~ta/ also fixes v(v). Now using whichever two of a(v), 3(v), and v(v)
are fixed here, to take the roles of a(v) and B(v) in the proof of our claim, we see
that @ = o € Z(G). But then mja(v) = aty(v) = are(v) = 7a(v), which cannot
be true since 7, '74 does not fix a(v). Thus a~'a’ cannot fix either a(v) or 3(v),
and hence (by our claim) does not fix any vertex outside of C,.
In particular, if a=!a/(a(v)) = pi(a(v)) where uy € Ry fixes every block of
By, and a '/ (B(v)) = pu2(B(v)) where us € Ry fixes every block of By, then
a td/ () = oflo/( ~18)k(v) for some k such that ki = 1, and by our claim
this will be u*uk(a='8)*(v) = py b (v), with neither y; nor py being the
identity. Also, since o’ commutes with 75, we have

d'm(v) = m(v) = 1o (v) = Tha(v) = o1ma(v),

so a ta/m(v) = o172(v) € T2(B,). Since ps moves the blocks of By in a p-cycle

and k # 0, uy " pkma(v) € 72(B,), which is a contradiction.

All of this serves to show that this case cannot arise unless Corollary [£.4) applies.

Case 2. v ¥ TJa(v) for every j # 0, 1.

We need to set up some notation for this case. Let o4 be the element of Ry,
that takes a®78(v) to 75 'mha®r8(v). Notice that o, fixes every block of By. For
any m, deﬁne km and k!, to be the unique values such that

Eum k.
0'1700-m,00'm,1 - Om,mi—1 = 01 g

Define ¢ by p(a®(v)) = oy5a(v) for any a, p(r5a”(v)) = (13)"p(a®(v)), and @
commutes with 79 and 7;. We claim that ¢ € G, and that ¢~ 75p = 7. With
Lemma [2.5] this will complete the proof.

We begin by showing that ¢ € G(?). Since ¢ fixes every block of By, according
to the assumptions of this case, we need only verify two things: that if w, z are such
that z € a%(Cy,) for some a, then there is some g € G such that g(B,) = ¢(By)
and g(By) = p(By); and that if w, z are such that x € 3%(C,,) for some a, then
there is some g € G such that g(B.) = ¢(B,) and g(B,,) = ¢(B.,)

Suppose that z € a®(Cy,), say w € t5a*(C,) and z € T5a*T*(C,). Then @(w
()' oty "(w) € (r5)'r;"(B.). Ao, g(a) = ( ot @) € ()0 (B,
giving us the desired conclusion with g = (74)'7; .

Suppose that = € 3%(C,,), say w € ha*(C,) and z € 74T a**+%(C,). Then

ks
pw) = (Tz)t‘ﬁ 0T2 (w)
k! _ _ _
= (Té)to—l zas éos % Js,;i—lTQ t(w)
kg —1_—1 -1

I
9
:Q
B
Q

04 105,001 - Os—1(w)
(S 0';30';% U;;z 10'5’00'8’1...0'57t,1(37/v)
() ~rs (B

Similarly,
(TQ/)t+ia ks&—a TZ—t—ia (33)

t+ia s+a —1 -1 —t—ia
( ) 0y K Ué+a OUa+a 1 Us+a,(s+a)i—1T2 (.27)

o()

_1 /
€ s+a ()05+a 1--- 5+a’(5+a)i,10—s+a7005+a,1 cee O—s+a,t+ai—1(Bm)

— (TQ)t s%7_251 t(B/)
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Again we have the desired conclusion, with g = (73)¢~ 75", Hence ¢ € G?).
Now consider ¢~ 'm5¢(w), where w € Tia®(C,). Although the calculation in the

case t = p — 1 is different from the other cases, straightforward calculations show

that this is 72 (w) in all cases. O

We have now proven our main theorem.

Proof of Theorem[I.1. Lemmas [5.3] and [5.4] together prove the desired result. O
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